Extracting a new fractal and semi-variance attributes for texture images categorization
Küçük Resim Yok
Tarih
2019
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Maltepe Üniversitesi
Erişim Hakkı
CC0 1.0 Universal
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
Texture feature extraction is one of the essential functions in the field of image processing and pattern recognition. There is a very high demand for finding new attributes for this purpose. The fractal dimension is demonstrated to be an excellent parameter to analyze textures at different scales. In this work, we propose new attributes for image categorization by utilizing two components of texture analysis: fractal and semi-variance characteristics. A set of five attributes is used to investigate different texture patterns. Lacunarity and two other attributes, along with fractal dimension, are four candidates for semi-variance estimation used to ensure a better description of the textured appearance. The Simple K-means method was adapted for clustering purposes and revealed from two to ten different clusters. Subsequently, several classification algorithms were used to categorize a new image form the extracted features; those classification algorithms are Nave bays, Decision tree, and Multilayer Perceptron. Ten-fold cross-validation scheme is also used to reduce the variability of the results.
Açıklama
Anahtar Kelimeler
Fractal attributes, Semi-variance two, Texture classification
Kaynak
International Conference of Mathematical Sciences (ICMS 2019)
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Yousif, S. A., Abdul-Wahed, H. Y. ve Al-Saidi, N. M. G. (2019). Extracting a new fractal and semi-variance attributes for texture images categorization. International Conference of Mathematical Sciences (ICMS 2019). s. 157.