Extracting a new fractal and semi-variance attributes for texture images categorization

dc.contributor.authorYousif, Suhad A.
dc.contributor.authorAbdul-Wahed, Hussam Y.
dc.contributor.authorAl-Saidi, Nadia M. G.
dc.date.accessioned2024-07-12T20:54:56Z
dc.date.available2024-07-12T20:54:56Z
dc.date.issued2019en_US
dc.departmentMaltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesien_US
dc.description.abstractTexture feature extraction is one of the essential functions in the field of image processing and pattern recognition. There is a very high demand for finding new attributes for this purpose. The fractal dimension is demonstrated to be an excellent parameter to analyze textures at different scales. In this work, we propose new attributes for image categorization by utilizing two components of texture analysis: fractal and semi-variance characteristics. A set of five attributes is used to investigate different texture patterns. Lacunarity and two other attributes, along with fractal dimension, are four candidates for semi-variance estimation used to ensure a better description of the textured appearance. The Simple K-means method was adapted for clustering purposes and revealed from two to ten different clusters. Subsequently, several classification algorithms were used to categorize a new image form the extracted features; those classification algorithms are Nave bays, Decision tree, and Multilayer Perceptron. Ten-fold cross-validation scheme is also used to reduce the variability of the results.en_US
dc.identifier.citationYousif, S. A., Abdul-Wahed, H. Y. ve Al-Saidi, N. M. G. (2019). Extracting a new fractal and semi-variance attributes for texture images categorization. International Conference of Mathematical Sciences (ICMS 2019). s. 157.en_US
dc.identifier.endpage158en_US
dc.identifier.isbn978-605-2124-29-1
dc.identifier.startpage157en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2831
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciences (ICMS 2019)en_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY01395
dc.subjectFractal attributesen_US
dc.subjectSemi-variance twoen_US
dc.subjectTexture classificationen_US
dc.titleExtracting a new fractal and semi-variance attributes for texture images categorizationen_US
dc.typeArticle
dspace.entity.typePublication

Dosyalar