Statistical quasi-Cauchy sequences

dc.authorid0000-0001-7344-5826en_US
dc.contributor.authorCakalli, Huseyin
dc.date.accessioned2024-07-12T21:51:52Z
dc.date.available2024-07-12T21:51:52Z
dc.date.issued2011en_US
dc.departmentMaltepe Üniversitesien_US
dc.description.abstractA subset E of a metric space (X, d) is totally bounded if and only if any sequence of points in E has a Cauchy subsequence. We call a sequence (x(n)) statistically quasi-Cauchy if st - lim(n ->infinity) d(x(n+1), x(n)) = 0, and lacunary statistically quasi-Cauchy if S-theta - lim(n ->infinity) d(x(n+1), x(n)) = 0. We prove that a subset E of a metric space is totally bounded if and only if any sequence of points in E has a subsequence which is any type of the following: statistically quasi-Cauchy, lacunary statistically quasi-Cauchy, quasi-Cauchy, and slowly oscillating. It turns out that a function defined on a connected subset E of a metric space is uniformly continuous if and only if it preserves either quasi-Cauchy sequences or slowly oscillating sequences of points in E. (C) 2011 Elsevier Ltd. All rights reserved.en_US
dc.identifier.doi10.1016/j.mcm.2011.04.037
dc.identifier.endpage1624en_US
dc.identifier.issn0895-7177
dc.identifier.issn1872-9479
dc.identifier.issue05.Junen_US
dc.identifier.scopus2-s2.0-79957867673en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage1620en_US
dc.identifier.urihttps://dx.doi.org/10.1016/j.mcm.2011.04.037
dc.identifier.urihttps://hdl.handle.net/20.500.12415/8326
dc.identifier.volume54en_US
dc.identifier.wosWOS:000291243300037en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorCakalli, Huseyin
dc.language.isoenen_US
dc.publisherPERGAMON-ELSEVIER SCIENCE LTDen_US
dc.relation.ispartofMATHEMATICAL AND COMPUTER MODELLINGen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKY02869
dc.subjectQuasi-Cauchy sequencesen_US
dc.subjectSlowly oscillating sequencesen_US
dc.subjectSummabilityen_US
dc.subjectTotal boundednessen_US
dc.subjectUniform continuityen_US
dc.titleStatistical quasi-Cauchy sequencesen_US
dc.typeArticle
dspace.entity.typePublication

Dosyalar