Delta-Quasi-slowly oscillating continuity

dc.authorid0000-0001-7344-5826en_US
dc.contributor.authorÇakallı, Hüseyin
dc.contributor.authorÇanak, İbrahim
dc.contributor.authorDik, Mehmet
dc.date.accessioned2024-07-12T20:55:43Z
dc.date.available2024-07-12T20:55:43Z
dc.date.issued2016en_US
dc.departmentMaltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesien_US
dc.description.abstractFirstly, some definitions and notations will be given in the following. Throughout this paper, N will denote the set of all positive integers. We will use boldface letters x,y,z,. . . for sequences x = (xn),y = (yn),z= (zn), . . . of terms in R, the set of all real numbers. Also, s and c will denote the set of all sequences of points in R and the set of all convergent sequences of points in R, respectively. A sequence x = (xn) of points in R is called statistically convergent [1] to an element ‘ of R if lim n!1 1 n jfk 6 n : jxk ‘j P egj ¼ 0; for every e > 0, and this is denoted by st limn?1xn = ‘. A sequence x = (xn) of points in R is slowly oscillating [2], denoted by x 2 SO, if lim k!1? limn max n?16k6½kn jxk xnj ¼ 0; where [kn] denotes the integer part of kn. This is equivalent to the following: xm xn?0 whenever 1 6 mn ! 1 as m,n?1. In terms of e and d, this is also equivalent to the case when for any given e > 0, there exist d = d (e) > 0 and a positive integer N = N(e) such that jxm xnj < e if nPN(e) and n 6 m 6 (1 + d)n. By a method of sequential convergence, or briefly a method, we mean a linear function G defined on a sublinear space of s, denoted by cG(R), into R. A sequence x = (xn) is said to be G-convergent [3] to ‘ if x 2 cG(R) and G(x) = ‘. In particular, lim denotes the limit function lim x = limnxn on the linear space c. A method G is called regular if every convergent sequence x = (xn) is G-convergent with G(x) = lim x. A method G is called subsequential if whenever x is G-convergent with G(x) = ‘, then there is a subsequence ?xnk ? of x with limkxnk ¼ ‘. A function f is called G-continuous [3] if G(f(x)) = f (G(x)) for any Gconvergent sequence x. Here we note that for special G = st lim, f is called statistically continuous [3]. For real and complex number sequences, we note that the most important transformation class is the class of matrix methods. For more information for classical and modern summability methods see [4].en_US
dc.identifier.citationÇakallı, H., Çanak, İ. ve Dik, M. (2010). Delta-quasi-slowly oscillating continuity. Applied Mathematics and Computation. s. 2865-2868.en_US
dc.identifier.doi10.1016/j.amc.2010.03.137
dc.identifier.endpage2868en_US
dc.identifier.scopus2-s2.0-77953230501en_US
dc.identifier.startpage2865en_US
dc.identifier.urihttps://www.sciencedirect.com/search?docId=00963003&title=Delta-quasi-slowly%20oscillating%20continuity
dc.identifier.urihttps://doi.prg/10.1016/j.amc.2010.03.137
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2884
dc.identifier.volume216en_US
dc.identifier.wosWOS:000278542800009en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isotren_US
dc.publisherScienceDirecten_US
dc.relation.ispartofApplied Mathematics and Computationen_US
dc.relation.publicationcategoryUluslararası Editör Denetimli Dergide Makaleen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKY00307
dc.subjectSlowly oscillating continuityen_US
dc.subjectD-quasi-slowly oscillating continuityen_US
dc.subjectSlowly oscillating sequencesen_US
dc.subjectQuasi-slowly oscillating sequencesen_US
dc.titleDelta-Quasi-slowly oscillating continuityen_US
dc.typeArticle
dspace.entity.typePublication

Dosyalar