Slowly oscillating continuity

Küçük Resim Yok

Tarih

2008

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Hindawi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

A function is continuous if and only if, for each point in the domain, , whenever . This is equivalent to the statement that is a convergent sequence whenever is convergent. The concept of slowly oscillating continuity is defined in the sense that a function is slowly oscillating continuous if it transforms slowly oscillating sequences to slowly oscillating sequences, that is, is slowly oscillating whenever is slowly oscillating. A sequence of points in is slowly oscillating if , where denotes the integer part of . Using 's and 's, this is equivalent to the case when, for any given , there exist and such that if and . A new type compactness is also defined and some new results related to compactness are obtained.

Açıklama

Anahtar Kelimeler

Kaynak

Abstract and Applied Analysis

WoS Q Değeri

Q2

Scopus Q Değeri

Cilt

Sayı

Künye

Çakallı, H. (2008). Slowly oscillating continuity. Abstract and Applied Analysis. Hindawi. s. 1-5.