Slowly oscillating continuity
Küçük Resim Yok
Tarih
2008
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Hindawi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
A function is continuous if and only if, for each point in the domain, , whenever . This is equivalent to the statement that is a convergent sequence whenever is convergent. The concept of slowly oscillating continuity is defined in the sense that a function is slowly oscillating continuous if it transforms slowly oscillating sequences to slowly oscillating sequences, that is, is slowly oscillating whenever is slowly oscillating. A sequence of points in is slowly oscillating if , where denotes the integer part of . Using 's and 's, this is equivalent to the case when, for any given , there exist and such that if and . A new type compactness is also defined and some new results related to compactness are obtained.
Açıklama
Anahtar Kelimeler
Kaynak
Abstract and Applied Analysis
WoS Q Değeri
Q2
Scopus Q Değeri
Cilt
Sayı
Künye
Çakallı, H. (2008). Slowly oscillating continuity. Abstract and Applied Analysis. Hindawi. s. 1-5.