On the Rigidity Part of Schwarz Lemma
Küçük Resim Yok
Tarih
2019
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Amer Inst Physics
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
We consider the rigidity part of Schwarz Lemma. Let f be a holomorphic function in the unit disc D and vertical bar Rf(z)vertical bar < 1 for vertical bar z vertical bar < 1. We generalize the rigidity of holomorphic function and provide sufficient conditions on the local behaviour of f near a finite set of boundary points that needs f to be a finite Blaschke product. For a different version of the rigidity theorems of D. Burns-S.Krantz and D. Chelst, we present some more general results in which the bilogaritmic concave majorants are used. The strategy of these results relies on a special version of Phragmen-Lindelof princible and Harnack inequality.
Açıklama
3rd International Conference of Mathematical Sciences (ICMS) -- SEP 04-08, 2019 -- Maltepe Univ, Istanbul, TURKEY
Anahtar Kelimeler
Holomorphic Function, Bilogarithmic Concave Majorant, Harnack Inequality, Phragmen-Lindelof Princible
Kaynak
Third International Conference of Mathematical Sciences (Icms 2019)
WoS Q Değeri
N/A
Scopus Q Değeri
N/A
Cilt
2183