On the Rigidity Part of Schwarz Lemma

Küçük Resim Yok

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Amer Inst Physics

Erişim Hakkı

info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

We consider the rigidity part of Schwarz Lemma. Let f be a holomorphic function in the unit disc D and vertical bar Rf(z)vertical bar < 1 for vertical bar z vertical bar < 1. We generalize the rigidity of holomorphic function and provide sufficient conditions on the local behaviour of f near a finite set of boundary points that needs f to be a finite Blaschke product. For a different version of the rigidity theorems of D. Burns-S.Krantz and D. Chelst, we present some more general results in which the bilogaritmic concave majorants are used. The strategy of these results relies on a special version of Phragmen-Lindelof princible and Harnack inequality.

Açıklama

3rd International Conference of Mathematical Sciences (ICMS) -- SEP 04-08, 2019 -- Maltepe Univ, Istanbul, TURKEY

Anahtar Kelimeler

Holomorphic Function, Bilogarithmic Concave Majorant, Harnack Inequality, Phragmen-Lindelof Princible

Kaynak

Third International Conference of Mathematical Sciences (Icms 2019)

WoS Q Değeri

N/A

Scopus Q Değeri

N/A

Cilt

2183

Sayı

Künye