On the Rigidity Part of Schwarz Lemma
dc.contributor.author | Akyel, Tuğba | |
dc.contributor.author | Örnek, Bülent Nafi | |
dc.date.accessioned | 2024-07-12T21:40:40Z | |
dc.date.available | 2024-07-12T21:40:40Z | |
dc.date.issued | 2019 | en_US |
dc.department | [Belirlenecek] | en_US |
dc.description | 3rd International Conference of Mathematical Sciences (ICMS) -- SEP 04-08, 2019 -- Maltepe Univ, Istanbul, TURKEY | en_US |
dc.description.abstract | We consider the rigidity part of Schwarz Lemma. Let f be a holomorphic function in the unit disc D and vertical bar Rf(z)vertical bar < 1 for vertical bar z vertical bar < 1. We generalize the rigidity of holomorphic function and provide sufficient conditions on the local behaviour of f near a finite set of boundary points that needs f to be a finite Blaschke product. For a different version of the rigidity theorems of D. Burns-S.Krantz and D. Chelst, we present some more general results in which the bilogaritmic concave majorants are used. The strategy of these results relies on a special version of Phragmen-Lindelof princible and Harnack inequality. | en_US |
dc.identifier.doi | 10.1063/1.5136123 | |
dc.identifier.isbn | 978-0-7354-1930-8 | |
dc.identifier.issn | 0094-243X | |
dc.identifier.scopus | 2-s2.0-85076712220 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.uri | https://doi.org/10.1063/1.5136123 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/7428 | |
dc.identifier.volume | 2183 | en_US |
dc.identifier.wos | WOS:000505225800022 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | en_US |
dc.publisher | Amer Inst Physics | en_US |
dc.relation.ispartof | Third International Conference of Mathematical Sciences (Icms 2019) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.snmz | KY08772 | |
dc.subject | Holomorphic Function | en_US |
dc.subject | Bilogarithmic Concave Majorant | en_US |
dc.subject | Harnack Inequality | en_US |
dc.subject | Phragmen-Lindelof Princible | en_US |
dc.title | On the Rigidity Part of Schwarz Lemma | en_US |
dc.type | Conference Object | |
dspace.entity.type | Publication |