Abel statistical delta quasi Cauchy sequences in metric spaces

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

In this paper, we investigate the concept of Abel statistical delta ward compactness and Abel statistical delta ward continuity in metric spaces. A function f defined on a metric space X into X is called Abel statistically delta ward continuous it preserves Abel statistical delta quasi Cauchy sequences, where a sequence (xk) of points in X is called Abel statistically delta quasi Cauchy if limx?1? (1 ? x) k:|d(xk+2,xk+1)?d(xk+1,xk )|?? xk = 0 for every ? > 0, Some other types of compactnesses are also studied and interesting results are obtained.

Açıklama

Anahtar Kelimeler

Abel statistical convergence, summability, quasi-Cauchy sequences, continuity

Kaynak

Fourth International Conference of Mathematical Sciences

WoS Q Değeri

N/A

Scopus Q Değeri

Cilt

Sayı

Künye

Taylan, İ. ve Çakallı, H. (2021). Abel statistical delta quasi Cauchy sequences in metric spaces. Fourth International Conference of Mathematical Sciences, Maltepe Üniversitesi. s. 1-4.