Abel statistical delta quasi Cauchy sequences in metric spaces
Küçük Resim Yok
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Maltepe Üniversitesi
Erişim Hakkı
CC0 1.0 Universal
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
In this paper, we investigate the concept of Abel statistical delta ward compactness and Abel statistical delta ward continuity in metric spaces. A function f defined on a metric space X into X is called Abel statistically delta ward continuous it preserves Abel statistical delta quasi Cauchy sequences, where a sequence (xk) of points in X is called Abel statistically delta quasi Cauchy if limx?1? (1 ? x) k:|d(xk+2,xk+1)?d(xk+1,xk )|?? xk = 0 for every ? > 0, Some other types of compactnesses are also studied and interesting results are obtained.
Açıklama
Anahtar Kelimeler
Abel statistical convergence, summability, quasi-Cauchy sequences, continuity
Kaynak
Fourth International Conference of Mathematical Sciences
WoS Q Değeri
N/A
Scopus Q Değeri
Cilt
Sayı
Künye
Taylan, İ. ve Çakallı, H. (2021). Abel statistical delta quasi Cauchy sequences in metric spaces. Fourth International Conference of Mathematical Sciences, Maltepe Üniversitesi. s. 1-4.