Variations on ward continuity in 2-normed spaces

Küçük Resim Yok

Tarih

2019

Yazarlar

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

In this paper, the concept of a quasi-Cauchy sequence is generalized to a concept of a p-quasi-Cauchy sequence for any fixed positive integer p in a 2-normed space X. Some interesting theorems related to p-ward continuity and uniform continuity are obtained. A sequence (xn) in a 2-normed space X is called p-quasi-Cauchy if limn?? ? xn+p – xn, z? = 0 for all z ? X. It turns out that if a function f defined on a subset of X is uniformly continuous, then f preserves p-quasi-Cauchy sequences for all positive integer p.

Açıklama

Anahtar Kelimeler

Kaynak

Third International Conference of Mathematical Sciences

WoS Q Değeri

N/A

Scopus Q Değeri

Cilt

Sayı

Künye

Ersan, S. (2019). Variations on ward continuity in 2-normed spaces. Third International Conference of Mathematical Sciences, Maltepe Üniversitesi. s. 1-3.