Variations on ward continuity in 2-normed spaces

dc.date.accessioned2024-07-12T20:54:28Z
dc.date.available2024-07-12T20:54:28Z
dc.date.issued2019en_US
dc.departmentMaltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesien_US
dc.description.abstractIn this paper, the concept of a quasi-Cauchy sequence is generalized to a concept of a p-quasi-Cauchy sequence for any fixed positive integer p in a 2-normed space X. Some interesting theorems related to p-ward continuity and uniform continuity are obtained. A sequence (xn) in a 2-normed space X is called p-quasi-Cauchy if limn?? ? xn+p – xn, z? = 0 for all z ? X. It turns out that if a function f defined on a subset of X is uniformly continuous, then f preserves p-quasi-Cauchy sequences for all positive integer p.en_US
dc.identifier.citationErsan, S. (2019). Variations on ward continuity in 2-normed spaces. Third International Conference of Mathematical Sciences, Maltepe Üniversitesi. s. 1-3.en_US
dc.identifier.doi10.1063/1.5136142
dc.identifier.endpage3en_US
dc.identifier.isbn978-0-7354-1930-8
dc.identifier.scopus2-s2.0-85076709791en_US
dc.identifier.startpage1en_US
dc.identifier.urihttps://aip.scitation.org/doi/abs/10.1063/1.5136142
dc.identifier.urihttps://doi.prg/10.1063/1.5136142
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2762
dc.identifier.wosWOS:000505225800040en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorErsan, Sibel
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofThird International Conference of Mathematical Sciencesen_US
dc.relation.publicationcategoryUluslararası Konferans Öğesien_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY08621
dc.titleVariations on ward continuity in 2-normed spacesen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar